Bayesian Denoising: From MAP to MMSE Using Consistent Cycle Spinning
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We investigate a stochastic signal-processing framework for signals with sparse derivatives, where the samples of a Levy process are corrupted by noise. The proposed signal model covers the well-known Brownian motion and piecewise-constant Poisson process; ...
Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal—sometimes greatly so. This paper develops message-passing de-quantization (MPDQ) algorithms for minimum mean-squared error estim ...
In this work, we analyze the mean-square performance of different strategies for distributed estimation over least-mean-squares (LMS) adaptive networks. The results highlight some useful properties for distributed adaptation in comparison to fusion-based c ...
We consider continuous-time sparse stochastic processes from which we have only a finite number of noisy/noiseless samples. Our goal is to estimate the noiseless samples (denoising) and the signal in-between (interpolation problem). By relying on tools fro ...
We introduce a new wavelet-based method for the implementation of Total-Variation-type denoising. The data term is least-squares, while the regularization term is gradient-based. The particularity of our method is to exploit a link between the discrete gra ...
We derive an adaptive diffusion mechanism to optimize global cost functions in a distributed manner over a network of nodes. The cost function is assumed to consist of the sum of individual components, and diffusion adaptation is used to enable the nodes t ...
In this work, we study the mean-square-error performance of a diffusion strategy for continuous-time estimation over networks. We derive differential equations that describe the evolution of the mean and correlation of the weight-error vector, and provide ...
We investigate the problem of the optimal reconstruction of a generalized Poisson process from its noisy samples. The process is known to have a finite rate of innovation since it is generated by a random stream of Diracs with a finite average number of im ...
We study the problem of distributed least-squares estimation over ad hoc adaptive networks, where the nodes have a common objective to estimate and track a parameter vector. We consider the case where there is stationary additive colored noise on both the ...
We investigate the problem of the optimal reconstruction of a generalized Poisson process from its noisy samples. The process is known to have a finite rate of innovation since it is generated by a random stream of Diracs with a finite average number of i ...