**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Arithmetic harmonic analysis on character and quiver Varieties II

Abstract

We study connections between the topology of generic character varieties of fundamental groups of punctured Riemann surfaces, Macdonald polynomials, quiver representations, Hilbert schemes on C-x x C-x, modular forms and multiplicities in tensor products of irreducible characters of finite general linear groups. (C) 2012 Elsevier Inc. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (6)

Riemann surface

In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together.

Quiver (mathematics)

In graph theory, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, in other words a multidigraph. They are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a. In , a quiver can be understood to be the underlying structure of a , but without composition or a designation of identity morphisms. That is, there is a forgetful functor from Cat to Quiv.

Fundamental group

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups.