Flat moduleIn algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper Géometrie Algébrique et Géométrie Analytique.
Quotient ringIn ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and ⋅ operations.
P-adic valuationIn number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted . Equivalently, is the exponent to which appears in the prime factorization of . The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers , the completion of the rational numbers with respect to the -adic absolute value results in the p-adic numbers .
Primary idealIn mathematics, specifically commutative algebra, a proper ideal Q of a commutative ring A is said to be primary if whenever xy is an element of Q then x or yn is also an element of Q, for some n > 0. For example, in the ring of integers Z, (pn) is a primary ideal if p is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals.
Group cohomologyIn mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-module M to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups .
P-adic analysisIn mathematics, p-adic analysis is a branch of number theory that deals with the mathematical analysis of functions of p-adic numbers. The theory of complex-valued numerical functions on the p-adic numbers is part of the theory of locally compact groups. The usual meaning taken for p-adic analysis is the theory of p-adic-valued functions on spaces of interest. Applications of p-adic analysis have mainly been in number theory, where it has a significant role in diophantine geometry and diophantine approximation.
Tate moduleIn mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks) (the Ks-valued points of G). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G. Given an abelian group A and a prime number p, the p-adic Tate module of A is where A[pn] is the pn torsion of A (i.
Local cohomologyIn algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain.
Étale fundamental groupThe étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces. In algebraic topology, the fundamental group of a pointed topological space is defined as the group of homotopy classes of loops based at . This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.
Length of a moduleIn algebra, the length of a module is a generalization of the dimension of a vector space which measures its size. page 153 It is defined to be the length of the longest chain of submodules. The modules of finite length are finitely generated modules, but as opposite to vector spaces, many finitely generated modules have an infinite length. Finitely generated modules of finite length are also called Artinian modules and are at the basis of the theory of Artinian rings. For vector spaces, the length equals the dimension.