Concept

Group cohomology

Summary
In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-module M to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients. These algebraic ideas are closely related to topological ideas. The group cohomology of a discrete group G is the singular cohomology of a suitable space having G as its fundamental group, namely the corresponding Eilenberg–MacLane space. Thus, the group cohomology of can be thought of as the singular cohomology of the circle S1, and similarly for and A great deal is known about the cohomology of groups, including interpretations of low-dimensional cohomology, functoriality, and how to change groups. The subject of group cohomology began in the 1920s, matured in the late 1940s, and continues as an area of active research today. A general paradigm in group theory is that a group G should be studied via its group representations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)

Towards new invariants for principal bundles

Martina Rovelli

We investigate the theory of principal bundles from a homotopical point of view. In the first part of the thesis, we prove a classification of principal bundles over a fixed base space, dual to the we
EPFL2017

Related people

Related units

Related concepts (66)
Group cohomology
In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-module M to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups .
Algebraic K-theory
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
Galois cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.
Related courses (11)
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-510: Modern algebraic geometry
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
MATH-323: Algebraic topology
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand it
Related lectures (84)
Universal Coefficient Theorems
Delves into the universal coefficient theorems in homological algebra, showcasing their practical application in computing homology and cohomology groups.
Cohomology Groups: Hopf Formula
Explores the Hopf formula in cohomology groups, emphasizing the 4-term exact sequence and its implications.
Homology of Projective Space
Covers the homology of projective space, focusing on cohomology and exact sequences.
Related MOOCs