**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

Abstract

We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fourier space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-sigma error on M-nu close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from sigma(M-nu) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (1)

Related publications (1)

Related concepts (5)

The Radio Sky II: Observational Radio Astronomy

This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation

Neutrino

A neutrino (njuːˈtriːnoʊ ; denoted by the Greek letter ν) is a fermion (an elementary particle with spin of 1 /2) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles.

Lambda-CDM model

The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with dark energy; second, the postulated cold dark matter (abbreviated CDM); and third, ordinary matter.

Redshift

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in frequency and energy, is known as a negative redshift, or blueshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum.

Physics beyond the Standard Model can appear as new particles too heavy to be produced in experiments (the energy frontier) or interacting too weakly to be seen in our measurements (the intensity frontier).
In the first part of this thesis, we study two dark matter models of electroweak WIMP coming from two limiting cases in the MSSM: the Higgsino and the Wino model. The dark matter candidate is a particle too heavy to be directly seen in colliders but it could be seen indirectly by astrophysical observations. Dark matter particles in the galaxy can annihilate to Standard Model particles and be detected by satellites. We consider the charged neutral mass splitting as a free parameter in the theory and investigate its effect on the Sommerfeld enhancement which gives an important boost to the annihilation cross-section, the main observable of indirect detection.
In the second part of this thesis, we present an idea of a fixed target experiment so search for dark sector models, a class of model with very weakly interacting particles. This experiment uses the experimental setup needed for a future muon collider but is independent from the muon collider program. We study the reach of our experiment for three benchmark models, the dark photon, the dark Higgs, the heavy neutral lepton and we compare its expected performances to current and future experiments.
In the third part of this thesis, we consider a more model-independent approach to the search for new physics. If new states are heavy, they can be integrated out and their leading effects are encoded in effective operators made of Standard Model fields. Assuming baryon and lepton number conservation, one can classify the effective operators of dimension-6 which give the leading contribution and constrain the coefficient of these operators by looking at precision observables. We compile results from LEP-I and LEP-II experiments as well as neutrino scattering and other low-energy observables. We allow all operators to be present with an arbitrary flavour structure. Our result can then be used to translate these constaints to specific models of new physics.