Concept

Neutrino

Summary
A neutrino (njuːˈtriːnoʊ ; denoted by the Greek letter ν) is a fermion (an elementary particle with spin of 1 /2) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrino, _Electron neutrino muon neutrino, _Muon neutrino tau neutrino, _Tau neutrino Each flavor is associated with the correspondingly named charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete neutrino masses with different tiny values (the smallest of which could even be zero), but the three masses do not uniquely correspond to the three flavors: A neutrino created with a specific flavor is a specific mixture of all three mass states (a quantum superposition). Similar to some other neutral particles, neutrinos oscillate between different flavors in flight as a consequence. For example, an electron neutrino produced in a beta decay reaction may interact in a distant detector as a muon or tau neutrino. The three mass values are not yet known as of 2022, but laboratory experiments and cosmological observations have determined the differences of their squares, an upper limit on their sum (< 2.14e-37kg), and an upper limit on the mass of the electron neutrino. For each neutrino, there also exists a corresponding antiparticle, called an antineutrino, which also has spin of 1 /2 and no electric charge.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.