Experimentally Engineering the Edge Termination of Graphene Nanoribbons
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
This thesis presents a combined experimental and theoretical study of the classical and quantum magnetization dynamics in single magnetic adatoms and molecules, and on the classical and quantum coherent control thereof. First, a detailed description of the ...
We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-missin ...
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...
The low-energy electronic structure of nanographenes can be tuned through zero-energy pi-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and ...
We conducted atomic-scale scanning tunneling microscopy of a graphene nanosheet on graphite. In addition to a rhombus lattice representing the (root 3x root 3)R30 degrees superstructure, we resolved another quadrangle lattice similar to a rectangle in the ...
This thesis investigates the magnetic properties of single atoms and dimers adsorbed on graphene and oxide decoupling layers supported by single crystal metal substrates, using scanning tunneling microscopy (STM) and spin-polarized scanning tunneling micro ...
Controlled atomic patterning is an attractive tool to fine tune properties of graphitic lattice. Several O-functionalized derivatives of graphitic lattice have been widely studied, e.g., graphene oxide, reduced graphene oxide, and functionalized carbon nan ...
Further miniaturisation of magnetic storage devices requires an advent of new types of magnets, since classical ferromagnetic materials show lack of remanence at nano- and subnanoscale. A single atom can represent the smallest possible bit of information. ...
The magnetic force microscope (MFM) is an established experimental tool for imaging stray fields with high spatial resolution and sensitivity. The MFM contrast can however contain contributions from the sample topography, variations in the surface Kelvin p ...