Publication

Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine

Abstract

N-Nitrosamines, in particular N-nitrosodimethylamine (NDMA), are carcinogens, which occur as chlorine disinfection by-products (DBPs) in swimming pools and hot tubs. UV treatment is a commonly used technique in swimming pools for disinfection and DBP attenuation. UV irradiation is known to efficiently degrade N-nitrosamines. However, UV irradiation (at lambda = 254 nm) of chlorinated dimethylamine (CDMA) and monochloramine, two NDMA precursors present in swimming pool water, resulted in a substantial UV-induced NDMA formation (similar to 1-2% molar yield based on initial CDMA concentration) simultaneously to NDMA photolysis. Maximum NDMA concentrations were found at UV doses in the range used for advanced oxidation (350-850 mJ cm(-2)). Very similar behaviour was found for other chlorinated secondary amines, namely diethylamine and morpholine. Effectiveness of UV irradiation for N-nitrosamine abatement depends on initial N-nitrosamine and precursor concentrations and the applied UV dose. N-Nitrosamine formation is hypothesized to occur via the reaction of nitric oxide or peroxynitrite with the secondary aminyl radical, which are products from the photolysis of monochloramine and chlorinated secondary amines, respectively. Experiments with pool water showed that similar trends were observed under pool water conditions. UV treatment (UV dose: similar to 360 mJ cm(-2)) slightly increased NDMA concentration in pool water instead of the anticipated 50% abatement in the absence of NDMA precursors. (C) 2012 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Disinfection by-product
Disinfection by-products (DBPs) are organic and inorganic compounds resulting from chemical reactions between organic and inorganic substances such as contaminates and chemical treatment disinfection agents, respectively, in water during water disinfection processes. Chlorinated disinfection agents such as chlorine and monochloramine are strong oxidizing agents introduced into water in order to destroy pathogenic microbes, to oxidize taste/odor-forming compounds, and to form a disinfectant residual so water can reach the consumer tap safe from microbial contamination.
Ultraviolet germicidal irradiation
Ultraviolet germicidal irradiation (UVGI) is a disinfection technique employing ultraviolet (UV) light, particularly UV-C (180-280 nm), to kill or inactivate microorganisms. UVGI primarily inactivates microbes by damaging their genetic material, thereby inhibiting their capacity to carry out vital functions. The use of UVGI extends to an array of applications, encompassing food, surface, air, and water disinfection. UVGI devices can inactivate microorganisms including bacteria, viruses, fungi, molds, and other pathogens.
Swimming pool
A swimming pool, swimming bath, wading pool, paddling pool, or simply pool, is a structure designed to hold water to enable swimming or other leisure activities. Pools can be built into the ground (in-ground pools) or built above ground (as a freestanding construction or as part of a building or other larger structure), and may be found as a feature aboard ocean-liners and cruise ships.
Show more
Related publications (44)

Acids from fruits generate photoactive Fe-complexes, enhancing solar disinfection of water (SODIS): A systematic study of the novel " fruto-Fenton " process, effective over a wide pH range (4-9) .

César Pulgarin, Aline Laetitia Schaub, Stefanos Giannakis, Giulio Farinelli, Mona Kohantorabi

This study aimed to enhance solar disinfection (SODIS) by the photo-Fenton process, operated at natural pH, through the re-utilization of fruit wastes. For this purpose, pure organic acids present in fruits and alimentary wastes were tested and compared wi ...
Pergamon-Elsevier Science Ltd2024

Oxidative Water Treatment: The Track Ahead

Urs von Gunten, Yun Ho Lee

Chemical oxidation has been applied in municipal water treatment for more than a century, initially for disinfection. In the early decades, chlorine disinfection was adopted in the fight against waterborne disease. However, the oxidative properties of chlo ...
2023

Why five decades of massive research on heterogeneous photocatalysis, especially on TiO2, has not yet driven to water disinfection and detoxification applications? Critical review of drawbacks and challenges

César Pulgarin, Julian Andrés Rengifo Herrera

For fifty years, heterogeneous photocatalysis has been considered as having potential to remove organic and microbiological pollutants from water under either artificial UV light or sunlight irradiation. However, after tens of thousands of published resear ...
Lausanne2023
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.