Mutual informationIn probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.
Angle-resolved photoemission spectroscopyAngle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelectric effect, in which an incoming photon of sufficient energy ejects an electron from the surface of a material. By directly measuring the kinetic energy and emission angle distributions of the emitted photoelectrons, the technique can map the electronic band structure and Fermi surfaces.
Process engineeringProcess engineering is the understanding and application of the fundamental principles and laws of nature that allow humans to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products.
Process simulationProcess simulation is used for the design, development, analysis, and optimization of technical processes such as: chemical plants, chemical processes, environmental systems, power stations, complex manufacturing operations, biological processes, and similar technical functions. Process simulation is a model-based representation of chemical, physical, biological, and other technical processes and unit operations in software.
ChemiluminescenceChemiluminescence (also chemoluminescence) is the emission of light (luminescence) as the result of a chemical reaction. There may also be limited emission of heat. Given reactants A and B, with an excited intermediate ◊, [A]{} + [B] -> {}[\lozenge ]{} -> {}[products]{} + light For example, if [A] is luminol and [B] is hydrogen peroxide in the presence of a suitable catalyst we have: \underset{luminol}{C8H7N3O2} + \underset{hydrogen\ peroxide}{H2O2} -> 3-APA[\lozenge] -> {3-APA} + light where: 3-APA is 3-aminophthalate 3-APA[◊] is the vibronic excited state fluorescing as it decays to a lower energy level.
2-Phosphoglycolate2-Phosphoglycolate (chemical formula C2H2O6P3-; also known as phosphoglycolate, 2-PG, or PG) is a natural metabolic product of the oxygenase reaction mediated by the enzyme ribulose 1,5-bisphosphate carboxylase (RuBisCo). RuBisCo catalyzes the fixation of atmospheric carbon dioxide in the chloroplasts of plants. It uses ribulose 1,5-bisphosphate (RuBP) as substrate and facilitates carboxylation at the C2 carbon via an endiolate intermediate. The two three-carbon products (3-phosphoglycerate) are subsequently fed into the Calvin cycle.