Publication

Multi-Scale Approach to Cracking Criteria for Drying Silty Soils

Lyesse Laloui, Mohammad Monfared
2013
Conference paper
Abstract

Cracking is a most unwanted development in soil structures undergoing periodic drying. Desiccation cracking arises in the apparent absence of external forces. Hence, either an internal, self equilibrated stress pattern resulting from kinematic incompatibilities, or stress resulting from reaction forces at the constraints should be contemplated to arrive at cracking criteria. Three circumstances are considered for drying cracks: drying shrinkage, kinematic constraints impeding the shrinkage inducing reaction forces, and consequent tensile effective stress reaching tensile strength. An earlier tubular micro-scale model of porous drying medium is considered with constrained at restrictive inter - pore solid contacts. At the meso-scale tubular drying pores are considered in the vicinity of an imperfection, inducing a stress concentration near its tip, in the presence of significant pore suction. This approach allows one to use the effective stress analysis, which otherwise, away from the stress concentration usually yields compressive effective stress and hence a physically incompatible criterion. Recent experimental results from an idealized configuration of a cluster of grains provide geometrical data suggesting that an imperfection as a result of air entry deep into the granular medium penetrates over 8 internal radii of the typical pore

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.