**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Three-dimensional stress state during dynamic shear rupture propagation along frictional interfaces in elastic plates

Abstract

The state of stress in plates, where one geometric dimensions is much smaller than the others, is often assumed to be of plane stress. This assumption is justified by the fact that the out-of-plane stress components are zero on the free-surfaces of a plate to satisfy the boundary conditions, and have little chance to develop in the bulk, due to the small thickness of the plate. At the same time, it is known that the static stress field associated with cracks approximates plane-strain conditions in the near-crack tip. However, it is not clear how the pre-existing plane-stress field of a plate is modified by a propagating dynamic shear rupture. Here we study the particle velocities and stress fields of dynamic shear ruptures in mode II propagating along the predefined frictional interface of two plates of an elastic material, loaded in compression and shear, using three-dimensional finite element modeling. The numerical simulations show the rapid development of out-of-plane stresses in the interior of the specimen, between the free surfaces. The out-of-plane normal stress is characterized by an anti symmetric pattern with lobes of alternating polarity, in planes parallel to the free-surfaces. On the interface plane, the out-of-plane stress has a complex pattern exhibiting an initial sudden variation over the plane stress conditions followed by crisscrossing features, behind the rupture tip. This study shows how plane-stress conditions, defining the state of stress before rupture arrival, are suddenly altered during dynamic rupture propagation. The out-of-plane stress rapidly deviates from the free-surface condition and a state of equivalent plane-strain in the stress-changes field is attained at the rupture tip, while behind the rupture tip a fully three-dimensional stress state is established. The three-dimensional finite element simulations presented here help interpret and explain previous experiments of dynamic shear ruptures by showing the complex particle velocity and stress fields in the interior of the specimen and along the interface plane, which are currently not accessible to full-field experimental measurements.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (83)

Related concepts (32)

Ontological neighbourhood

Cauchy stress tensor

In continuum mechanics, the Cauchy stress tensor , true stress tensor, or simply called the stress tensor is a second order tensor named after Augustin-Louis Cauchy. The tensor consists of nine components that completely define the state of stress at a point inside a material in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector e to the traction vector T(e) across an imaginary surface perpendicular to e: or, The SI units of both stress tensor and traction vector are N/m2, corresponding to the stress scalar.

Stress (mechanics)

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).

Stress–strain analysis

Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.

Yves Bellouard, Christos Edouardos Athanasiou, Saood Ibni Nazir

The question of whether static stress in fused silica relaxes at room temperature is still under debate. Here, we report experimental data investigating the behavior of fused silica at room temperature when subjected to static tensile stress up to 2 GPa st ...

2022Pandula Manura Liyanage, Claudia Cancellieri, Giacomo Lorenzin

Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...

Brice Tanguy Alphonse Lecampion, Regina Fakhretdinova, Alexis Alejandro Sáez Uribe

Deep heat mining requires activation of slip on pre-existing geological discontinuities and the creation of hydraulically conductive fracture networks. Fluid injection or diffusion of ground waters can rise the fluid pressure near pre-existing fractures an ...

2023