Neutrino detectorA neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud.
Solar neutrino problemThe solar neutrino problem concerned a large discrepancy between the flux of solar neutrinos as predicted from the Sun's luminosity and as measured directly. The discrepancy was first observed in the mid-1960s and was resolved around 2002. The flux of neutrinos at Earth is several tens of billions per square centimetre per second, mostly from the Sun's core. They are nevertheless hard to detect, because they interact very weakly with matter, traversing the whole Earth.
Alternatives to the Standard Higgs ModelThe Alternative models to the Standard Higgs Model are models which are considered by many particle physicists to solve some of the Higgs boson's existing problems. Two of the most currently researched models are quantum triviality, and Higgs hierarchy problem. Introduction to the Higgs field In particle physics, elementary particles and forces give rise to the world around us. Physicists explain the behaviors of these particles and how they interact using the Standard Model—a widely accepted framework believed to explain most of the world we see around us.
Mathematical formulation of the Standard ModelThis article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena.
Generation (particle physics)In particle physics, a generation or family is a division of the elementary particles. Between generations, particles differ by their flavour quantum number and mass, but their electric and strong interactions are identical. There are three generations according to the Standard Model of particle physics. Each generation contains two types of leptons and two types of quarks. The two leptons may be classified into one with electric charge −1 (electron-like) and neutral (neutrino); the two quarks may be classified into one with charge − (down-type) and one with charge + (up-type).
Electron neutrinoThe electron neutrino (_Electron neutrino) is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli in 1930, to account for missing momentum and missing energy in beta decay, and was discovered in 1956 by a team led by Clyde Cowan and Frederick Reines (see Cowan–Reines neutrino experiment).
FermionIn particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin 1/2, spin 3/2, etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics. Some fermions are elementary particles (such as electrons), and some are composite particles (such as protons).
Supernova neutrinosSupernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting on the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10MeV.
Minimal Supersymmetric Standard ModelThe Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory.
Muon neutrinoThe muon neutrino is an elementary particle which has the symbol _Muon neutrino and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics. The muon neutrino or "neutretto" was hypothesized to exist by a number of physicists in the 1940s. The first paper on it may be Shoichi Sakata and Takesi Inoue's two-meson theory of 1942, which also involved two neutrinos.