Magnetism of Single Adatoms and Small Adsorbed Clusters Investigated by Means of Low-Temperature STM
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
Controlling and shaping radiation beams is fundamental for a better understanding of radiation-matter interaction and advancing experimental techniques for material characterization at high spatial resolution.In particular, the current trend in the miniatu ...
Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, verticall ...
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
The motion of atoms is at the heart of any chemical or structural transformation in molecules and materials. Upon activation of this motion by an external source, several (usually many) vibrational modes can be coherently coupled, thus facilitating the che ...
Quantum magnetic impurities give rise to a wealth of phenomena attracting tremendous research interest in recent years. On a normal metal, magnetic impurities generate the correlation-driven Kondo effect. On a superconductor, bound states emerge inside the ...
We combine spin-polarized scanning tunneling microscopy with quantum master equation analysis to investigate the spin dynamics of the single atom magnet Dy on graphene/Ir(111). By performing reading and writing experiments, we show that the strongly spin p ...
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
Carbon nano-onions are a class of nanomaterials that can exhibit long electron spin relaxation times at room temperature and thus hold promise as potential building blocks for spintronics and quantum information processing devices. Despite first being synt ...
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...