Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Mass spectrometry (MS) is currently the most sensitive and selective analytical technique for routine peptide and protein structure analysis. Top-down proteomics is based on tandem mass spectrometry (MS/MS) of intact proteins, where multiply charged precursor ions are fragmented in the gas phase, typically by electron transfer or electron capture dissociation, to yield sequence-specific fragment ions. This approach is primarily used for the study of protein isoforms, including localization of post-translational modifications and identification of splice variants. Bottom-up proteomics is utilized for routine high-throughput protein identification and quantitation from complex biological samples. The proteins are first enzymatically digested into small (usually less than ca. 3 kDa) peptides, these are identified by MS or MS/MS, usually employing collisional activation techniques. To overcome the limitations of these approaches while combining their benefits, middle-down proteomics has recently emerged. Here, the proteins are digested into long (3-15 kDa) peptides via restricted proteolysis followed by the MS/MS analysis of the obtained digest. With advancements of high-resolution MS and allied techniques, routine implementation of the middle-down approach has been made possible. Herein, we present the liquid chromatography (LC)-MS/MS-based experimental design of our middle-down proteomic workflow coupled with post-LC supercharging.
Thomas Rizzo, Ahmed Ben Faleh, Stephan Warnke, Ali H Abikhodr, Teun Van Wieringen