Symmetry Reduction Of Brownian Motion And Quantum Calogero-Moser Models
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Numerous dimensionality reduction problems in data analysis involve the recovery of low-dimensional models or the learning of manifolds underlying sets of data. Many manifold learning methods require the estimation of the tangent space of the manifold at a ...
We prove upper bounds for Hecke-Laplace eigenfunctions on certain Riemannian manifolds X of arithmetic type, uniformly in the eigenvalue and the volume of the manifold. The manifolds under consideration are d-fold products of 2-spheres or 3-spheres, realiz ...
We study time-like hypersurfaces with vanishing mean curvature in the (3+1) dimensional Minkowski space, which are the hyperbolic counterparts to minimal embeddings of Riemannian manifolds. The catenoid is a stationary solution of the associated Cauchy pro ...
We study the evolution equation where is the Dirichlet-Neumann operator of a decreasing family of Riemannian manifolds with boundary . We derive a lower bound for the solution of such an equation, and apply it to a quantitative density estimate for the res ...
We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their cano ...
In imitation learning, multivariate Gaussians are widely used to encode robot behaviors. Such approaches do not provide the ability to properly represent end-effector orientation, as the distance metric in the space of orientations is not Euclidean. In thi ...
We study the interface of the symmetric multitype contact process on Z. In this process, each site of Z is either empty or occupied by an individual of one of two species. Each individual dies with rate 1 and attempts to give birth with rate 2R lambda; the ...
Wave maps are the simplest wave equations taking their values in a Riemannian manifold (M,g). Their Lagrangian is the same as for the scalar equation, the only difference being that lengths are measured with respect to the metric g. By Noether's theorem, s ...
Bi-Jacobi fields are generalized Jacobi fields, and are used to efficiently compute approximations to Riemannian cubic splines in a Riemannian manifold M. Calculating bi-Jacobi fields is straightforward when M is a symmetric space such as bi-invariant SO(3 ...
We study Sobolev-type metrics of fractional order s a parts per thousand yen 0 on the group Diff (c) (M) of compactly supported diffeomorphisms of a manifold M. We show that for the important special case M = S (1), the geodesic distance on Diff (c) (S (1) ...