Publication

An Approach for Imitation Learning on Riemannian Manifolds

Sylvain Calinon
2017
Journal paper
Abstract

In imitation learning, multivariate Gaussians are widely used to encode robot behaviors. Such approaches do not provide the ability to properly represent end-effector orientation, as the distance metric in the space of orientations is not Euclidean. In this work we present an extension of common probabilistic learning from demonstration techniques to Riemannian manifolds. This generalization enables the encoding of joint distributions that include the robot pose. We show that Gaussian conditioning, Gaussian product and nonlinear regression can be achieved with this representation. The proposed approach is illustrated with examples on a 2-dimensional sphere, as well as with an example of regression between two robot end-effector poses, and by extending TP-GMM and GMR to Riemannian manifolds.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.