Genetic algorithmIn computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.
Randomized algorithmA randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables.
Dead-code eliminationIn compiler theory, dead-code elimination (DCE, dead-code removal, dead-code stripping, or dead-code strip) is a compiler optimization to remove dead code (code that does not affect the program results). Removing such code has several benefits: it shrinks program size, an important consideration in some contexts, and it allows the running program to avoid executing irrelevant operations, which reduces its running time. It can also enable further optimizations by simplifying program structure.
Expected utility hypothesisThe expected utility hypothesis is a popular concept in economics that serves as a reference guide for decision making when the payoff is uncertain. The theory describes which options rational individuals should choose in a situation with uncertainty, based on their risk aversion. The expected utility hypothesis states an agent chooses between risky prospects by comparing expected utility values (i.e. the weighted sum of adding the respective utility values of payoffs multiplied by their probabilities).
Threaded codeIn computer science, threaded code is a programming technique where the code has a form that essentially consists entirely of calls to subroutines. It is often used in compilers, which may generate code in that form or be implemented in that form themselves. The code may be processed by an interpreter or it may simply be a sequence of machine code call instructions. Threaded code has better density than code generated by alternative generation techniques and by alternative calling conventions.
Domain-driven designDomain-driven design (DDD) is a major software design approach, focusing on modeling software to match a domain according to input from that domain's experts. Under domain-driven design, the structure and language of software code (class names, class methods, class variables) should match the business domain. For example: if software processes loan applications, it might have classes like "loan application", "customers", and methods such as "accept offer" and "withdraw".
Behavioral economicsBehavioral economics studies the effects of psychological, cognitive, emotional, cultural and social factors in the decisions of individuals or institutions, and how these decisions deviate from those implied by classical economic theory. Behavioral economics is primarily concerned with the bounds of rationality of economic agents. Behavioral models typically integrate insights from psychology, neuroscience and microeconomic theory. The study of behavioral economics includes how market decisions are made and the mechanisms that drive public opinion.