Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
We report the development of piezoresistive cantilevers for intermolecular force detection in biochemical sensing, by using a commercial CMOS technology. The detection of the small forces involved in molecular recognition requires cantilevers with a small spring constant and high force sensitivity. We have fabricated polycrystalline silicon cantilevers by using the two polysilicon layers of a commercial CMOS process with minimum design rule widths. The cantilevers have been released by post-process micromachining. The upper polysilicon layer has been used as a piezoresistor. CMOS amplifying circuits have been integrated on-chip with the cantilever structures. The cantilevers have small spring constants ranging from 1.5 to 12 mN/m. The complete system has been successfully tested by applying a known transverse displacement with an AFM tip. A force sensitivity of 8 mu V/pN and resolution of 50 pN has been obtained. This high resolution is obtained with CMOS polysilicon, which has a relatively low piezoresistive coefficient, but this is compensated by the integration of signal-processing circuitry. (c) 2006 Elsevier B.V. All rights reserved.