Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Geometric distributionIn probability theory and statistics, the geometric distribution is either one of two discrete probability distributions: The probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set ; The probability distribution of the number Y = X − 1 of failures before the first success, supported on the set . Which of these is called the geometric distribution is a matter of convention and convenience. These two different geometric distributions should not be confused with each other.
Coupon (finance)In finance, a coupon is the interest payment received by a bondholder from the date of issuance until the date of maturity of a bond. Coupons are normally described in terms of the "coupon rate", which is calculated by adding the sum of coupons paid per year and dividing it by the bond's face value. For example, if a bond has a face value of 1,000andacouponrateof550 per year. Typically, this will consist of two semi-annual payments of $25 each. Joint probability distributionGiven two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered for any given number of random variables. The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables. It also encodes the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
Rational pricingRational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments. Arbitrage is the practice of taking advantage of a state of imbalance between two (or possibly more) markets. Where this mismatch can be exploited (i.
Numerical integrationIn analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals.
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Bond valuationBond valuation is the determination of the fair price of a bond. As with any security or capital investment, the theoretical fair value of a bond is the present value of the stream of cash flows it is expected to generate. Hence, the value of a bond is obtained by discounting the bond's expected cash flows to the present using an appropriate discount rate. In practice, this discount rate is often determined by reference to similar instruments, provided that such instruments exist.
Rate functionIn mathematics — specifically, in large deviations theory — a rate function is a function used to quantify the probabilities of rare events. Such functions are used to formulate large deviation principle. A large deviation principle quantifies the asymptotic probability of rare events for a sequence of probabilities. A rate function is also called a Cramér function, after the Swedish probabilist Harald Cramér. Rate function An extended real-valued function I : X → [0, +∞] defined on a Hausdorff topological space X is said to be a rate function if it is not identically +∞ and is lower semi-continuous, i.
Short-rate modelA short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written . Under a short rate model, the stochastic state variable is taken to be the instantaneous spot rate. The short rate, , then, is the (continuously compounded, annualized) interest rate at which an entity can borrow money for an infinitesimally short period of time from time .