Publication

Modelling of evaporation in alpine glaciers and watersheds

Diane Von Gunten
2011
Student project
Abstract

Summary and conclusion: In this report, we first study evaporation and condensation on alpine glaciers. We present two models of ice evaporation and we compare them with observations. We afterwards estimate the impact of ice evaporation in present and future climate on discharge. In a second part, we use the Penman-Monteith equation [7] to model evaporation in other alpine landtype as moraine, rocks and vegetation. We introduce this evaporation modelling in a glacio-hdrological model [39] and apply this model to the Rhone catchment [9] [10]. We then use this model to estimate the importance of evaporation in present and future climate in high alpine catchment. The main conclusions from this study are : 1. On glacier, evaporation and condensation are not likely to aect discharge in signicant way. If modelling of ice evaporation is nevertheless needed, condensation must be computed along with evaporation. Models of ice evaporation give reasonable results when the needed data is available or can be interpolated. 2. Two glacio-hydrological models have been applied on the Rhone catchment. Calibration and validation show good results apart from one year which has been dismissed. Modelled actual evaporation is coherent with measurements on vegetation and moraines. Rock evaporation is close to the results from an other modelling study. 3. Our case study shows that actual evaporation will probably increase in the future in alpine watersheds. The main reasons for this increase are the glacier retreat (increased in evaporation area), the shorter snow season (increase of evaporation time) and the added melted water from the glacier (increase in water availability). However, it is not possible to see any trend for potential evaporation as evolution of radiation and wind are unknown. Nevertheless, even if potential evaporation evolution is not known, increase of actual evaporation seems to be signicant compared to the known uncertainties. However, important changes on glacier retreat or a clear decrease in potential evaporation might change these results. 4. Impact of actual evaporation, dened as the ratio of discharge and actual evaporation, will probably increase in the future and could reach 15%. This is around three times the actual impact of evaporation. Increase of actual evaporation is of course an important factor in this increase. However, change in discharge is central as well. It is probable that evaporation impact will stay low in a moderately warmer climate as increase in actual evaporation is balanced by a higher discharge. 5. As a result evaporation should be modelled with care in glacio-hydrological models when they are applied in dierent climates. Indeed, in the actual climate, it is possible to validate, with a reasonable error, glaciohydrological model with an imprecise modelling of evaporation. However, error on evaporation might become signicant in a warmer climate, especially if discharge decreases.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Evaporation
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas.
Evaporative cooler
An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate (that is, it has a large enthalpy of vaporization).
Evaporator
An evaporator is a device used to turn a liquid into a gas. Some air conditioners and refrigerators use compressed liquids with a low boiling point that vaporizes within the system to cool it, whilst emitting the thermal energy into its surroundings. Evaporators are often used to concentrate a solution. One example is the climbing/falling film plate evaporator, which is used to make condensed milk. Similarly, reduction (cooking) is a process of evaporating liquids from a solution to produce a "reduced" food product, such as wine reduction.
Show more
Related publications (37)

Near-bed stratification controls bottom hypoxia in ice-covered alpine lakes

Damien Bouffard, Hugo Nicolás Ulloa Sánchez, Camille Roland Marie Minaudo, Janine Rüegg, Tomy Doda, Nicolas Thomas Georges Escoffier, Hannah Elisa Chmiel, Pascal Perolo

In ice-covered lakes, near-bottom oxygen concentration decreases for most of the wintertime, sometimes down to the point that bottom waters become hypoxic. Studies insofar have reached divergent conclusions on whether climate change limits or reinforces th ...
WILEY2023

Future water temperature of rivers in Switzerland under climate change investigated with physics-based models

Michael Lehning, Wolf Hendrik Huwald, Adrien Michel, Bettina Schaefli, Nander Wever

River ecosystems are highly sensitive to cli-mate change and projected future increase in air tempera-ture is expected to increase the stress for these ecosystems. Rivers are also an important socio-economic factor impact- ing, amongst others, agriculture, ...
2022

Climate Change Impacts on Groundwater Recharge in Cold and Humid Climates: Controlling Processes and Thresholds

Emmanuel Qays Dubois

Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range ...
2022
Show more
Related MOOCs (2)
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz