Publication

A crystal plasticity analysis of length-scale dependent internal stresses with image effects

Ramin Aghababaei
2012
Journal paper
Abstract

In this work, we present a stress functions approach to include image effects in continuum crystal plasticity arising from the long-range elastic interactions (LRI) between the GND density and free surfaces. The resulting length-scale dependent internal stresses augment those produced by the GND density variation. The formulation is applied to the case of a long, thin specimen subjected to uniform curvature. The analysis shows that under nominally uniform GND density distribution, internal stresses arise from two sources: (1) GND-GND LRI arising from the finite spatial extent of the uniform GND density field and (2) the LRI between the GND density and free surfaces appearing as image fields. A comparison with experimental results suggests that the length-scale for internal stresses, described as a correlation length-scale, should increase with decreasing specimen thickness. This observation is rationalized by associating the internal length-scale with the average slip-plane spacing, which may increase with decreasing specimen size due to paucity of dislocation sources. Finally, we also discuss the length-scale dependent image stress in terms of the Peach-Koehler force density proposed by Gurtin (2002). © 2012 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.