Fourier Analysis Of Stationary Time Series In Function Space
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...
Robustness and stability of image-reconstruction algorithms have recently come under scrutiny. Their importance to medical imaging cannot be overstated. We review the known results for the topical variational regularization strategies ( ℓ2 and ℓ1 regulariz ...
Fourier transforms are an often necessary component in many computational tasks, and can be computed efficiently through the fast Fourier transform (FFT) algorithm. However, many applications involve an underlying continuous signal, and a more natural choi ...
The interior transmission eigenvalue problem is a system of partial differential equations equipped with Cauchy data on the boundary: the transmission conditions. This problem appears in the inverse scattering theory for inhomogeneous media when, for some ...
In this paper we analyze the spectral level statistics of the one-dimensional ionic Hubbard model, the Hubbard model with an alternating on-site potential. In particular, we focus on the statistics of the gap ratios between consecutive energy levels. This ...
Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well ha ...
We provide a computationally and statistically efficient method for estimating the parameters of a stochastic covariance model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the Debiased Spatial Whittle l ...
We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...
We analyze the clustering of galaxies using the z = 1.006 snapshot of the CosmoDC2 simulation, a high-fidelity synthetic galaxy catalog designed to validate analysis methods for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). We prese ...
This thesis focuses on developing efficient algorithmic tools for processing large datasets. In many modern data analysis tasks, the sheer volume of available datasets far outstrips our abilities to process them. This scenario commonly arises in tasks incl ...