Publication

A single-molecule stretching method for lateral and normal AFM lever calibration

Abstract

A novel method for quantitative lateral force measurement (LFM) calibration has been developed. Using a single-molecule spectroscopy approach it is possible to calibrate the AFM levers for both lateral and normal spring constants with a single image scan. Moreover, our method does not involve tip modifications. Dextran molecules were chosen for testing our calibration procedure due to their characteristic plateau feature in the force-elongation curve which enables an easy identification of single-molecule stretching events. Using a non-standard (tilted) geometry of AFM scanning, it is possible to observe different components of the stretching force on both normal and lateral force signals. These signals can be further compared to the values obtained by standard (normal) spectroscopic measurements. The values of the normal spring constant obtained with our method are in good agreement with the results obtained from the method exploiting the energy equipartition theorem. The statistical analysis shows that the approach proposed in our paper gives reproducible results of the lateral sensitivity with a relative standard deviation less than 15%.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.