Publication

Application of a New Sensing Principle for Photoacoustic Imaging of Point Absorbers

Abstract

Photoacoustic tomography (PAT) is a hybrid imaging method, which combines ultrasonic and optical imaging modalities, in order to overcome their respective weaknesses and to combine their strengths. It is based on the reconstruction of optical absorption properties of the tissue from the measurements of a photoacoustically-generated pressure field. Current methods consider laser excitation, under thermal and stress confinement assumptions, which leads to the generation of a propagating pressure field. Conventional reconstruction techniques then recover the initial pressure field based on the boundary measurements by iterative reconstruction algorithms in time- or Fourier-domain. Here, we propose an application of a news sensing principle that allows for efficient and non-iterative reconstruction algorithm for imaging point absorbers in PAT. We consider a closed volume surrounded by a measurement surface in an acoustically homogeneous medium and we aim at recovering the positions and the amount of heat absorbed by these absorbers. We propose a two-step algorithm based on proper choice of so-called sensing functions. Specifically, in the first step, we extract the projected positions on the complex plane and the weights by a sensing function that is well-localized on the same plane. In the second step, we recover the remaining z-location by choosing a proper set of plane waves. We show that the proposed families of sensing functions are sufficient to recover the parameters of the unknown sources without any discretization of the domain. We extend the method for sources that have joint-sparsity; i.e., the absorbers have the same positions for different frequencies. We evaluate the performance of the proposed algorithm using simulated and noisy sensor data and we demonstrate the improvement obtained by exploiting joint sparsity.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (36)
Photoacoustic imaging
Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect. Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband (i.e. MHz) ultrasonic emission. The generated ultrasonic waves are detected by ultrasonic transducers and then analyzed to produce images.
Compressed sensing
Compressed sensing (also known as compressive sensing, compressive sampling, or sparse sampling) is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems. This is based on the principle that, through optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Nyquist–Shannon sampling theorem. There are two conditions under which recovery is possible.
Tomographic reconstruction
Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Show more
Related publications (49)

Asymmetric phase modulation of light with parity-symmetry broken metasurfaces

Karim Achouri, Jean-Yves Duboz

The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex eigenvalues (poles and ...
Washington2023

2.5 Hz sample rate time-domain near-infrared optical tomography based on SPAD-camera image tissue hemodynamics

Edoardo Charbon, Scott Anthony Lindner, Martin Wolf, Jingjing Jiang

Tim-domain near-infrared optical tomography (TD NIROT) techniques based on diffuse light were gaining performance over the last years. They are capable of imaging tissue at several centimeters depth and reveal clinically relevant information, such as tissu ...
OPTICAL SOC AMER2022

Polarization-sensitive optics diffraction tomography

Demetri Psaltis, Joowon Lim, Elizabeth Elena Antoine, Amirhossein Saba Shirvan, Ahmed Ayoub

Polarization of light has been widely used as a contrast mechanism in two-dimensional (2D) microscopy and also in some three-dimensional (3D) imaging modalities. In this paper, we report the 3D tomographic reconstruction of the refractive index (RI) tensor ...
OPTICAL SOC AMER2021
Show more
Related MOOCs (20)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.