Publication

Damage prediction for regular reinforced concrete buildings using the decision tree algorithm

Abstract

To overcome the problem of outlier data in the regression analysis for numerical-based damage spectra, the C4.5 decision tree learning algorithm is used to predict damage in reinforced concrete buildings in future earthquake scenarios. Reinforced concrete buildings are modelled as single-degree-of-freedom systems and various time-history nonlinear analyses are performed to create a dataset of damage indices. Subsequently, two decision trees are trained using the qualitative interpretations of those indices. The first decision tree determines whether damage occurs in an RC building. Consequently, the second decision tree predicts the severity of damage as repairable, beyond repair, or collapse.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.