Publication

Evidence of reduced surface electron-phonon scattering in the conduction band of Bi2Se3 by nonequilibrium ARPES

Abstract

The nature of the Dirac quasiparticles in topological insulators calls for a direct investigation of the electron-phonon scattering at the surface. By comparing time-resolved ARPES measurements of the topological insulator Bi2Se3 with different probing depths, we show that the relaxation dynamics of the electronic temperature of the conduction band is much slower at the surface than in the bulk. This observation suggests that surface phonons are less effective in cooling the electron gas in the conduction band.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.