Publication

Evolving Monolithic Robot Controllers through Incremental Shaping

Joshua Evan Auerbach
2011
Book chapter
Abstract

Evolutionary robotics has been shown to be an effective technique for generating robot behaviors that are difficult to derive analytically from the robot’s mechanics and task environment. Moreover, augmenting evolutionary algorithms with environmental scaffolding via an incremental shaping method makes it possible to evolve controllers for complex tasks that would otherwise be infeasible. In this paper we present a summary of two recent publications in the evolutionary robotics literature demonstrating how these methods can be used to evolve robot controllers for non-trivial tasks, what the obstacles are in evolving controllers in this way, and present a novel research question that can be investigated under this framework.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (22)
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Robot
A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically. A robot can be guided by an external control device, or the control may be embedded within. Robots may be constructed to evoke human form, but most robots are task-performing machines, designed with an emphasis on stark functionality, rather than expressive aesthetics.
Evolutionary robotics
Evolutionary robotics is an embodied approach to Artificial Intelligence (AI) in which robots are automatically designed using Darwinian principles of natural selection. The design of a robot, or a subsystem of a robot such as a neural controller, is optimized against a behavioral goal (e.g. run as fast as possible). Usually, designs are evaluated in simulations as fabricating thousands or millions of designs and testing them in the real world is prohibitively expensive in terms of time, money, and safety.
Show more
Related publications (35)

Memento Mori: Reliable robustness in self-reconfigurable modular robots

Kevin Andrew Holdcroft

Modular robotics link the reliability of a centralised system with the adaptivity of a decentralised system. It is difficult for a robot with a fixed shape to be able to perform many different types of tasks. As the task space grows, the number of function ...
EPFL2024

Self-Correcting Quadratic Programming-Based Robot Control

Aude Billard, Farshad Khadivar, Konstantinos Chatzilygeroudis

Quadratic Programming (QP)-based controllers allow many robotic systems, such as humanoids, to successfully undertake complex motions and interactions. However, these approaches rely heavily on adequately capturing the underlying model of the environment a ...
2023

Learning from demonstration with model-based Gaussian process

Sylvain Calinon, David Ginsbourger, Noémie Laure Gwendoline Jaquier

In learning from demonstrations, it is often desirable to adapt the behavior of the robot in function of the variability retrieved from human demonstrations and the (un)certainty encoded in different parts of the task. In this paper, we propose a novel mul ...
2019
Show more
Related MOOCs (11)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
The Thymio robot as a tool for discovering digital science
This MOOC teaches basic understanding of robots’ mechanisms and Thymio’s programming languages, classroom use and pedagogical elements.
Show more