Sign languageSign languages (also known as signed languages) are languages that use the visual-manual modality to convey meaning, instead of spoken words. Sign languages are expressed through manual articulation in combination with non-manual markers. Sign languages are full-fledged natural languages with their own grammar and lexicon. Sign languages are not universal and are usually not mutually intelligible, although there are also similarities among different sign languages.
Recurrent neural networkA recurrent neural network (RNN) is one of the two broad types of artificial neural network, characterized by direction of the flow of information between its layers. In contrast to uni-directional feedforward neural network, it is a bi-directional artificial neural network, meaning that it allows the output from some nodes to affect subsequent input to the same nodes. Their ability to use internal state (memory) to process arbitrary sequences of inputs makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Indigenous languageAn indigenous language, or autochthonous language, is a language that is native to a region and spoken by indigenous peoples. This language is from a linguistically distinct community that originated in the area. Indigenous languages are not necessarily national languages but they can be; for example, Aymara is an official language of Bolivia. Also, national languages are not necessarily indigenous to the country.
Modern languageA modern language is any human language that is currently in use as a native language. The term is used in language education to distinguish between languages which are used for day-to-day communication (such as French and German) and dead classical languages such as Latin and Classical Chinese, which are studied for their cultural or linguistic value. SIL Ethnologue defines a living language as "one that has at least one speaker for whom it is their first language" (see also Language § Linguistic diversity).
Language disorderLanguage disorders or language impairments are disorders that involve the processing of linguistic information. Problems that may be experienced can involve grammar (syntax and/or morphology), semantics (meaning), or other aspects of language. These problems may be receptive (involving impaired language comprehension), expressive (involving language production), or a combination of both. Examples include specific language impairment, better defined as developmental language disorder, or DLD, and aphasia, among others.
Artificial neural networkArtificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.
Statistical learning in language acquisitionStatistical learning is the ability for humans and other animals to extract statistical regularities from the world around them to learn about the environment. Although statistical learning is now thought to be a generalized learning mechanism, the phenomenon was first identified in human infant language acquisition. The earliest evidence for these statistical learning abilities comes from a study by Jenny Saffran, Richard Aslin, and Elissa Newport, in which 8-month-old infants were presented with nonsense streams of monotone speech.
Convolutional neural networkConvolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
Feature learningIn machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task. Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process.