In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.
Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data such as images, video, and sensor data has not yielded to attempts to algorithmically define specific features. An alternative is to discover such features or representations through examination, without relying on explicit algorithms.
Feature learning can be either supervised, unsupervised or self-supervised.
In supervised feature learning, features are learned using labeled input data. Labeled data includes input-label pairs where the input is given to the model and it must produce the ground truth label as the correct answer. This can be leveraged to generate feature representations with the model which result in high label prediction accuracy. Examples include supervised neural networks, multilayer perceptron and (supervised) dictionary learning.
In unsupervised feature learning, features are learned with unlabeled input data by analyzing the relationship between points in the dataset. Examples include dictionary learning, independent component analysis, matrix factorization and various forms of clustering.
In self-supervised feature learning, features are learned using unlabeled data like unsupervised learning, however input-label pairs are constructed from each data point, which enables learning the structure of the data through supervised methods such as gradient descent. Classical examples include word embeddings and autoencoders. SSL has since been applied to many modalities through the use of deep neural network architectures such as CNNs and transformers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours suivi propose une initiation aux concepts de base de la programmation impérative tels que : variables, expressions, structures de contrôle, fonctions/méthodes, en les illustrant dans la synta
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan
Deep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances.
Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Explores trajectory forecasting in autonomous vehicles, focusing on deep learning models for predicting human trajectories in socially-aware transportation scenarios.
Explores generative models for trajectory forecasting in autonomous vehicles, including discriminative vs generative models, VAES, GANS, and case studies.
Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.
Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault d ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches have shown remarkable success on synthetic datasets, we have observed them to fail in the presence of real-world data. We ...