Supervised and unsupervised Web-based language model domain adaptation
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Humor recognition has been widely studied as a text classification problem using data-driven approaches. However, most existing work does not examine the actual joke mechanism to understand humor. We break down any joke into two distinct components: the se ...
Transformer-based language models trained on large text corpora have enjoyed immense popularity in the natural language processing community and are commonly used as a starting point for downstream tasks. While these models are undeniably useful, it is a c ...
Overview Cough audio signal classification has been successfully used to diagnose a variety of respiratory conditions, and there has been significant interest in leveraging Machine Learning (ML) to provide widespread COVID-19 screening. Th ...
In this work, we propose lattice-free MMI (LFMMI) for supervised adaptation of self-supervised pretrained acoustic model. We pretrain a Transformer model on thousand hours of untranscribed Librispeech data followed by supervised adaptation with LFMMI on th ...
Large-scale models for learning fixed-dimensional cross-lingual sentence representations like LASER (Artetxe and Schwenk, 2019b) lead to significant improvement in performance on downstream tasks. However, further increases and modifications based on such ...
This report provides an overview of the work carried out in improving Language Model (LM) development used during the decoding of an Automatic Speech Recognition (ASR) system. The goal of this work is to develop a robust language model that can be adapted ...
This article proposes a novel feature-extraction framework for inferring impression personality traits, emergent leadership skills, communicative competence, and hiring decisions. The proposed framework extracts multimodal features, describing each partici ...
Automatic Speech Recognition (ASR) can introduce higher levels of automation into Air Traffic Control (ATC), where spoken language is still the predominant form of communication. While ATC uses standard phraseology and a limited vocabulary, we need to adap ...
Automatic Speech Recognition (ASR) can introduce higher levels of automation into Air Traffic Control (ATC), where spoken language is still the predominant form of communication. While ATC uses standard phraseology and a limited vocabulary, we need to adap ...
Automatic Speech Recognition (ASR) has recently proved to be a useful tool to reduce the workload of air traffic controllers leading to significant gains in operational efficiency. Air Traffic Control (ATC) systems in operation rooms around the world gener ...