Supervised and unsupervised Web-based language model domain adaptation
Publications associées (43)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Transformer-based language models trained on large text corpora have enjoyed immense popularity in the natural language processing community and are commonly used as a starting point for downstream tasks. While these models are undeniably useful, it is a c ...
Overview Cough audio signal classification has been successfully used to diagnose a variety of respiratory conditions, and there has been significant interest in leveraging Machine Learning (ML) to provide widespread COVID-19 screening. Th ...
Large-scale models for learning fixed-dimensional cross-lingual sentence representations like LASER (Artetxe and Schwenk, 2019b) lead to significant improvement in performance on downstream tasks. However, further increases and modifications based on such ...
This report provides an overview of the work carried out in improving Language Model (LM) development used during the decoding of an Automatic Speech Recognition (ASR) system. The goal of this work is to develop a robust language model that can be adapted ...
Automatic Speech Recognition (ASR) can introduce higher levels of automation into Air Traffic Control (ATC), where spoken language is still the predominant form of communication. While ATC uses standard phraseology and a limited vocabulary, we need to adap ...
Humor recognition has been widely studied as a text classification problem using data-driven approaches. However, most existing work does not examine the actual joke mechanism to understand humor. We break down any joke into two distinct components: the se ...
In this work, we propose lattice-free MMI (LFMMI) for supervised adaptation of self-supervised pretrained acoustic model. We pretrain a Transformer model on thousand hours of untranscribed Librispeech data followed by supervised adaptation with LFMMI on th ...
Automatic Speech Recognition (ASR) has recently proved to be a useful tool to reduce the workload of air traffic controllers leading to significant gains in operational efficiency. Air Traffic Control (ATC) systems in operation rooms around the world gener ...
This article proposes a novel feature-extraction framework for inferring impression personality traits, emergent leadership skills, communicative competence, and hiring decisions. The proposed framework extracts multimodal features, describing each partici ...
Automatic Speech Recognition (ASR) can introduce higher levels of automation into Air Traffic Control (ATC), where spoken language is still the predominant form of communication. While ATC uses standard phraseology and a limited vocabulary, we need to adap ...