Multi-core processorA multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques.
Task parallelismTask parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data.
Parallel computingParallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Granularity (parallel computing)In parallel computing, granularity (or grain size) of a task is a measure of the amount of work (or computation) which is performed by that task. Another definition of granularity takes into account the communication overhead between multiple processors or processing elements. It defines granularity as the ratio of computation time to communication time, wherein computation time is the time required to perform the computation of a task and communication time is the time required to exchange data between processors.
Data parallelismData parallelism is parallelization across multiple processors in parallel computing environments. It focuses on distributing the data across different nodes, which operate on the data in parallel. It can be applied on regular data structures like arrays and matrices by working on each element in parallel. It contrasts to task parallelism as another form of parallelism. A data parallel job on an array of n elements can be divided equally among all the processors.
Interpreter (computing)In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: Parse the source code and perform its behavior directly; Translate source code into some efficient intermediate representation or object code and immediately execute that; Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter Virtual Machine.
Multi-chip moduleA multi-chip module (MCM) is generically an electronic assembly (such as a package with a number of conductor terminals or "pins") where multiple integrated circuits (ICs or "chips"), semiconductor dies and/or other discrete components are integrated, usually onto a unifying substrate, so that in use it can be treated as if it were a larger IC. Other terms for MCM packaging include "heterogeneous integration" or "hybrid integrated circuit".
Stream processingIn computer science, stream processing (also known as event stream processing, data stream processing, or distributed stream processing) is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation. Stream processing encompasses dataflow programming, reactive programming, and distributed data processing. Stream processing systems aim to expose parallel processing for data streams and rely on streaming algorithms for efficient implementation.
System on a chipA system on a chip or system-on-chip (SoC ,ˈɛsoʊsiː; pl. SoCs ,ˈɛsoʊsiːz) is an integrated circuit that integrates most or all components of a computer or other electronic system. These components almost always include on-chip central processing unit (CPU), memory interfaces, input/output devices, input/output interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip.
Graphics processing unitA graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and (either on a video card or embedded on the motherboards, mobile phones, personal computers, workstations, and game consoles). After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.