Explicitly parallel instruction computingExplicitly parallel instruction computing (EPIC) is a term coined in 1997 by the HP–Intel alliance to describe a computing paradigm that researchers had been investigating since the early 1980s. This paradigm is also called Independence architectures. It was the basis for Intel and HP development of the Intel Itanium architecture, and HP later asserted that "EPIC" was merely an old term for the Itanium architecture. EPIC permits microprocessors to execute software instructions in parallel by using the compiler, rather than complex on-die circuitry, to control parallel instruction execution.
Central processing unitA central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged.
Instruction unitThe instruction unit (I-unit or IU), also called, e.g., instruction fetch unit (IFU), instruction issue unit (IIU), instruction sequencing unit (ISU), in a central processing unit (CPU) is responsible for organizing program instructions to be fetched from memory, and executed, in an appropriate order, and for forwarding them to an execution unit (E-unit or EU). The I-unit may also do, e.g., address resolution, pre-fetching, prior to forwarding an instruction. It is a part of the control unit, which in turn is part of the CPU.
Computer architectureIn computer science, computer architecture is a description of the structure of a computer system made from component parts. It can sometimes be a high-level description that ignores details of the implementation. At a more detailed level, the description may include the instruction set architecture design, microarchitecture design, logic design, and implementation. The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine.
Multithreading (computer architecture)In computer architecture, multithreading is the ability of a central processing unit (CPU) (or a single core in a multi-core processor) to provide multiple threads of execution concurrently, supported by the operating system. This approach differs from multiprocessing. In a multithreaded application, the threads share the resources of a single or multiple cores, which include the computing units, the CPU caches, and the translation lookaside buffer (TLB).
Instruction schedulingIn computer science, instruction scheduling is a compiler optimization used to improve instruction-level parallelism, which improves performance on machines with instruction pipelines. Put more simply, it tries to do the following without changing the meaning of the code: Avoid pipeline stalls by rearranging the order of instructions. Avoid illegal or semantically ambiguous operations (typically involving subtle instruction pipeline timing issues or non-interlocked resources).
Chip carrierIn electronics, a chip carrier is one of several kinds of surface-mount technology packages for integrated circuits (commonly called "chips"). Connections are made on all four edges of a square package; compared to the internal cavity for mounting the integrated circuit, the package overall size is large. Chip carriers may have either J-shaped metal leads for connections by solder or by a socket, or may be lead-less with metal pads for connections. If the leads extend beyond the package, the preferred description is "flat pack".
Data parallelismData parallelism is parallelization across multiple processors in parallel computing environments. It focuses on distributing the data across different nodes, which operate on the data in parallel. It can be applied on regular data structures like arrays and matrices by working on each element in parallel. It contrasts to task parallelism as another form of parallelism. A data parallel job on an array of n elements can be divided equally among all the processors.
Task parallelismTask parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data.
Reduced instruction set computerIn computer engineering, a reduced instruction set computer (RISC) is a computer architecture designed to simplify the individual instructions given to the computer to accomplish tasks. Compared to the instructions given to a complex instruction set computer (CISC), a RISC computer might require more instructions (more code) in order to accomplish a task because the individual instructions are written in simpler code.