Muons probe magnetism and hydrogen interaction in graphene
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semico ...
The phase of a quantum state may not return to its original value after the system's parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been access ...
American Association for the Advancement of Science2017
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...
From recent advances in solid state physics, a novel material classification scheme has evolved
which is based on the concept of topology and provides an understanding of different phenomena
ranging from quantum transport to unusual flavors of superconduct ...
Since their discovery, graphene and other 2D materials have become a subject of intense research in condensed matter physics. Especially the vast possibilities of combining those materials into heterostructures are promising for the discovery of novel phys ...
Carbon nano-onions are a class of nanomaterials that can exhibit long electron spin relaxation times at room temperature and thus hold promise as potential building blocks for spintronics and quantum information processing devices. Despite first being synt ...
Further miniaturisation of magnetic storage devices requires an advent of new types of magnets, since classical ferromagnetic materials show lack of remanence at nano- and subnanoscale. A single atom can represent the smallest possible bit of information. ...
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions(1). In recent years, there have been notable achievements in detecting(2) and coherently controlling(3-7) indivi ...
This thesis presents combined experimental and theoretical investigations of nanoscale, surface-supported magnets based on rare earths (RE) to understand and control the magnetic properties down to the scale of single atoms. We present the effects of adato ...