Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The subject of the present work is discovery and in-depth characterization of a new class of functional materials. Tuning of the bond polarity and orbital occupation with a goal of establishing balance between localization and delocalization of electrons - ...
This thesis explores the application of recent advances in integrated photonics to the field of light detection and ranging (LiDAR).The progress in photonic integration allows for unprecedented levels of light manipulation on micrometer scales through the ...
Nuclear magnetic resonance (NMR) methods are powerful tools employed in many fields, including physics, chemistry, material science, biology, and medicine. The use of NMR methodologies in an even wider range of applications is often hindered by the relativ ...
Inductive circuits and devices are ubiquitous and important design elements in many applications, such as magnetic drives, galvanometers, magnetic scanners, applying direct current (DC) magnetic fields to systems, radio frequency coils in nuclear magnetic ...
Quantum magnetic impurities give rise to a wealth of phenomena attracting tremendous research interest in recent years. On a normal metal, magnetic impurities generate the correlation-driven Kondo effect. On a superconductor, bound states emerge inside the ...
Three-dimensional topological semimetals have emerged as strong candidates to probe new fundamental physical phenomena that could be exploited to develop next generation electronics. However, many aspects of their electronic properties remain unclear. Thi ...
We analyze the quantum antiferromagnet on the maple leaf lattice in the presence of a magnetic field. Starting from its exact dimer ground state and for a magnetic field strength of the order of the local dimer spin-exchange coupling, we perform a strong-c ...
Microcavity polaritons are strongly interacting hybrid light-matter quasiparticles, which are promising for the development of novel light sources and active photonic devices. Here, we report polariton lasing in the UV spectral range in microring resonator ...
Integrated microring resonators are well suited for wavelength-filtering applications in optical signal processing, and cascaded microring resonators allow flexible filter design in coupledresonator optical waveguide (CROW) configurations. However, the imp ...
Optical resonators enable the generation, manipulation, and storage of electromagnetic waves. The physics underlying their operation is determined by the interference of electromagnetic waves, giving rise to the resonance spectrum. This mechanism causes th ...