Publication

An Information-Based Approximation Scheme for Stochastic Optimization Problems in Continuous Time

Daniel Kuhn
2009
Journal paper
Abstract

Dynamic stochastic optimization problems with a large (possibly infinite) number of decision stages and high-dimensional state vectors are inherently difficult to solve. In fact, scenario tree-based algorithms are unsuitable for problems with many stages, while dynamic programming-type techniques are unsuitable for problems with many state variables. This paper proposes a stage aggregation scheme for stochastic optimization problems in continuous time, thus having an extremely large (i.e., uncountable) number of decision stages. By perturbing the underlying data and information processes, we construct two approximate problems that provide bounds on the optimal value of the original problem. Moreover, we prove that the gap between the bounds converges to zero as the stage aggregation is refined. If massive aggregation of stages is possible without sacrificing too much accuracy, the aggregate approximate problems can be addressed by means of scenario tree-based methods. The suggested approach applies to problems that exhibit randomness in the objective and the constraints, while the constraint functions are required to be additively separable in the decision variables and random parameters.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.