Algebraically closed fieldIn mathematics, a field F is algebraically closed if every non-constant polynomial in F[x] (the univariate polynomial ring with coefficients in F) has a root in F. As an example, the field of real numbers is not algebraically closed, because the polynomial equation has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed.
Existence of GodThe existence of God (or more generally, the existence of deities) is a subject of debate in theology, philosophy of religion and popular culture. A wide variety of arguments for and against the existence of God or deities can be categorized as logical, empirical, metaphysical, subjective or scientific. In philosophical terms, the question of the existence of God or deities involves the disciplines of epistemology (the nature and scope of knowledge) and ontology (study of the nature of being or existence) and the theory of value (since some definitions of God include "perfection").
Gradient descentIn mathematics, gradient descent (also often called steepest descent) is a iterative optimization algorithm for finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a local maximum of that function; the procedure is then known as gradient ascent.
Mathematical constantA mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and pi occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (pi).
Aix-en-ProvenceAix-en-Provence (UKˌɛks_ɒ̃_prɒˈvɒ̃s, USˌeɪks_ɒ̃_proʊˈvɒ̃s,ˌɛks-), or simply Aix (medieval Occitan: Aics), is a city and commune in southern France, about north of Marseille. A former capital of Provence, it is the subprefecture of the arrondissement of Aix-en-Provence, in the department of Bouches-du-Rhône, in the region of Provence-Alpes-Côte d'Azur. The population of Aix-en-Provence is approximately 145,000. Its inhabitants are called Aixois or, less commonly, Aquisextains.
Conjugate gradient methodIn mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.
Euler's constantEuler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log: Here, ⌊ ⌋ represents the floor function. The numerical value of Euler's constant, to 50 decimal places, is: The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43).
Algebraic closureIn mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemma or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field K is unique up to an isomorphism that fixes every member of K. Because of this essential uniqueness, we often speak of the algebraic closure of K, rather than an algebraic closure of K.
Lemniscate constantIn mathematics, the lemniscate constant π is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of pi for the circle. Equivalently, the perimeter of the lemniscate is 2π. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol π is a cursive variant of π; see Pi § Variant pi. Gauss's constant, denoted by G, is equal to π /pi ≈ 0.8346268.
Gravitational constantThe gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter G, is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's theory of general relativity. In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their distance.