In mathematics, the lemniscate constant π is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of pi for the circle. Equivalently, the perimeter of the lemniscate is 2π. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol π is a cursive variant of π; see Pi § Variant pi.
Gauss's constant, denoted by G, is equal to π /pi ≈ 0.8346268.
John Todd named two more lemniscate constants, the first lemniscate constant A = π/2 ≈ 1.3110287771 and the second lemniscate constant B = pi/(2π) ≈ 0.5990701173.
Sometimes the quantities 2π or A are referred to as the lemniscate constant.
Gauss's constant is named after Carl Friedrich Gauss, who calculated it via the arithmetic–geometric mean as . By 1799, Gauss had two proofs of the theorem that where is the lemniscate constant.
The lemniscate constant and first lemniscate constant were proven transcendental by Theodor Schneider in 1937 and the second lemniscate constant and Gauss's constant were proven transcendental by Theodor Schneider in 1941. In 1975, Gregory Chudnovsky proved that the set is algebraically independent over , which implies that and are algebraically independent as well. But the set (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over . In fact,
Usually, is defined by the first equality below.
where K is the complete elliptic integral of the first kind with modulus k, Β is the beta function, Γ is the gamma function and ζ is the Riemann zeta function.
The lemniscate constant can also be computed by the arithmetic–geometric mean ,
Moreover,
which is analogous to
where is the Dirichlet beta function and is the Riemann zeta function.
Gauss's constant is typically defined as the reciprocal of the arithmetic–geometric mean of 1 and the square root of 2, after his calculation of published in 1800:
Gauss's constant is equal to
where Β denotes the beta function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse. Modern mathematics defines an "elliptic integral" as any function f which can be expressed in the form where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated roots, and c is a constant.
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
We study the existence, uniqueness, and regularity of the solution to the stochastic reaction-diffusion equation (SRDE) with colored noise F-center dot:partial derivative(t)u = aijuxixj +biuxi + cu - bu1+beta +xi u1+gamma F-center dot, (t, x) is ...
San Diego2023
A decomposition of multicorrelation sequences for commuting transformations along primes, Discrete Analysis 2021:4, 27 pp. Szemerédi's theorem asserts that for every positive integer k and every δ>0 there exists n such that every subset of ${1, ...