Displacement currentIn electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials (as opposed to vacuum), there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.
Circular dichroismCircular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century.
Ampère's circuital lawIn classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell (not Ampère) derived it using hydrodynamics in his 1861 published paper "" In 1865 he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law, which is one of Maxwell's equations which form the basis of classical electromagnetism.