Summary
In electromagnetism, displacement current density is the quantity ∂D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials (as opposed to vacuum), there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization. The idea was conceived by James Clerk Maxwell in his 1861 paper On Physical Lines of Force, Part III in connection with the displacement of electric particles in a dielectric medium. Maxwell added displacement current to the electric current term in Ampère's Circuital Law. In his 1865 paper A Dynamical Theory of the Electromagnetic Field Maxwell used this amended version of Ampère's Circuital Law to derive the electromagnetic wave equation. This derivation is now generally accepted as a historical landmark in physics by virtue of uniting electricity, magnetism and optics into one single unified theory. The displacement current term is now seen as a crucial addition that completed Maxwell's equations and is necessary to explain many phenomena, most particularly the existence of electromagnetic waves. The electric displacement field is defined as: where: ε0 is the permittivity of free space; E is the electric field intensity; and P is the polarization of the medium. Differentiating this equation with respect to time defines the displacement current density, which therefore has two components in a dielectric:(see also the "displacement current" section of the article "current density") The first term on the right hand side is present in material media and in free space. It doesn't necessarily come from any actual movement of charge, but it does have an associated magnetic field, just as a current does due to charge motion.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.