**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Accurate and efficient evaluation of failure probability for partial different equations with random input data

Abstract

Several computational challenges arise when evaluating the failure probability of a given system in the context of risk prediction or reliability analysis. When the dimension of the uncertainties becomes high, well established direct numerical methods can not be employed because of the "curse-of-dimensionality". Many surrogate models have been proposed with the aim of reducing computational effort. However, most of them fail in computing an accurate failure probability when the limit state surface defined by the failure event in the probability space lacks smoothness. In addition, for a stochastic system modeled by partial differential equations (PDEs) with random input, only a limited number of the underlying PDEs (order of a few tens) are affordable to solve in practice due to the considerable computational effort, therefore preventing the application of many numerical methods especially for high dimensional random inputs. In this work we develop hybrid and goal-oriented adaptive reduced basis methods to tackle these challenges by accurately and efficiently computing the failure probability of a stochastic PDE. The curse-of-dimensionality is significantly alleviated by reduced basis approximation whose bases are constructed by goal-oriented adaptation. Moreover, an accurate evaluation of the failure probability for PDE system with solution of low regularity in probability space is guaranteed by the certified a posteriori error bound for the output approximation error. At the end of this paper we suitably extend our proposed method to deal with more general PDE models. Finally we perform several numerical experiments to illustrate its computational accuracy and efficiency. (C) 2013 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (72)

Loading

Loading

Loading

Related concepts (30)

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathema

Partial differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.
The function is often thought of as

Stochastic process

In probability theory and related fields, a stochastic (stəˈkæstɪk) or random process is a mathematical object usually defined as a sequence of random variables, where the index of the sequence has

This thesis is devoted to the derivation of error estimates for partial differential equations with random input data, with a focus on a posteriori error estimates which are the basis for adaptive strategies. Such procedures aim at obtaining an approximation of the solution with a given precision while minimizing the computational costs. If several sources of error come into play, it is then necessary to balance them to avoid unnecessary work. We are first interested in problems that contain small uncertainties approximated by finite elements. The use of perturbation techniques is appropriate in this setting since only few terms in the power series expansion of the exact random solution with respect to a parameter characterizing the amount of randomness in the problem are required to obtain an accurate approximation. The goal is then to perform an error analysis for the finite element approximation of the expansion up to a certain order. First, an elliptic model problem with random diffusion coefficient with affine dependence on a vector of independent random variables is studied. We give both a priori and a posteriori error estimates for the first term in the expansion for various norms of the error. The results are then extended to higher order approximations and to other sources of uncertainty, such as boundary conditions or forcing term. Next, the analysis of nonlinear problems in random domains is proposed, considering the one-dimensional viscous Burgers' equation and the more involved incompressible steady-state Navier-Stokes equations. The domain mapping method is used to transform the equations in random domains into equations in a fixed reference domain with random coefficients. We give conditions on the mapping and the input data under which we can prove the well-posedness of the problems and give a posteriori error estimates for the finite element approximation of the first term in the expansion. Finally, we consider the heat equation with random Robin boundary conditions. For this parabolic problem, the time discretization brings an additional source of error that is accounted for in the error analysis. The second part of this work consists in the analysis of a random elliptic diffusion problem that is approximated in the physical space by the finite element method and in the stochastic space by the stochastic collocation method on a sparse grid. Considering a random diffusion coefficient with affine dependence on a vector of independent random variables, we derive a residual-based a posteriori error estimate that controls the two sources of error. The stochastic error estimator is then used to drive an adaptive sparse grid algorithm which aims at alleviating the so-called curse of dimensionality inherent to tensor grids. Several numerical examples are given to illustrate the performance of the adaptive procedure.

We introduce new sufficient conditions for a numerical method to approximate with high order of accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the weak order of accuracy of the method. We then present a systematic procedure based on the framework of modified differential equations for the construction of stochastic integrators that capture the invariant measure of a wide class of ergodic SDEs (Brownian and Langevin dynamics) with an accuracy independent of the weak order of the underlying method. Numerical experiments confirm our theoretical findings

Assyr Abdulle, Giacomo Rosilho De Souza

Stabilized Runge–Kutta (aka Chebyshev) methods are especially efficient for the numerical solution of large systems of stiff differential equations because they are fully explicit; hence, they are inherently parallel and easily accommodate nonlinearity. For semi-discrete parabolic (or diffusion dominated) problems, for instance, stabilized Runge–Kutta methods overcome the stringent stability condition of standard methods without sacrificing explicitness. However, when much of the stiffness is only induced by a few components, as in the presence of spatially local mesh refinement, their efficiency deteriorates. To remove the crippling effect of a few severely stiff components on the entire system of differential equations, we derive a modified equation, whose stiffness solely depend on the remaining mildly stiff components. By applying stabilized Runge–Kutta methods to this modified equation, we then devise an explicit multirate Runge–Kutta–Chebyshev (mRKC) method whose stability conditions are independent of a few severely stiff components. Stability of the mRKC method is proved for a model problem, whereas its efficiency and usefulness are demonstrated through a series of numerical experiments.