**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Hyperbolic partial differential equation

Summary

In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation. In one spatial dimension, this is
The equation has the property that, if u and its first time derivative are arbitrarily specified initial data on the line t = 0 (with sufficient smoothness properties), then there exists a solution for all time t.
The solutions of hyperbolic equations are "wave-like". If a disturbance is made in the initial data of a hyperbolic differential equation, then not every point of space feels the disturbance at once. Relative to a fixed time coordinate, disturbances have a finite propagation speed. They travel along the characteristics of the equation. This feature qualitatively distinguishes hyperbolic equations from elliptic partial differential equations and parabolic partial differential equations. A perturbation of the initial (or boundary) data of an elliptic or parabolic equation is felt at once by essentially all points in the domain.
Although the definition of hyperbolicity is fundamentally a qualitative one, there are precise criteria that depend on the particular kind of differential equation under consideration. There is a well-developed theory for linear differential operators, due to Lars Gårding, in the context of microlocal analysis. Nonlinear differential equations are hyperbolic if their linearizations are hyperbolic in the sense of Gårding. There is a somewhat different theory for first order systems of equations coming from systems of conservation laws.
A partial differential equation is hyperbolic at a point provided that the Cauchy problem is uniquely solvable in a neighborhood of for any initial data given on a non-characteristic hypersurface passing through .

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (26)

Related lectures (159)

Related publications (275)

Related people (44)

Related units (7)

Related concepts (9)

Related MOOCs (2)

Ontological neighbourhood

Differential Equations: Speed Variation Analysis

Covers the analysis of speed variation using differential equations and small time intervals.

Regularity of Weak Solutions

Explores elliptic PDEs, weak solutions, regularity, and strong solutions, with a focus on classical solutions and proof techniques.

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

Method of characteristics

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

Elliptic operator

In the theory of partial differential equations, elliptic operators are differential operators that generalize the Laplace operator. They are defined by the condition that the coefficients of the highest-order derivatives be positive, which implies the key property that the principal symbol is invertible, or equivalently that there are no real characteristic directions. Elliptic operators are typical of potential theory, and they appear frequently in electrostatics and continuum mechanics.

, , , , , , , , ,

MATH-305: Introduction to partial differential equations

This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.

PHYS-101(f): General physics : mechanics

Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr

MATH-106(c): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

,

We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...

, ,

Despite the widespread empirical success of ResNet, the generalization properties of deep ResNet are rarely explored beyond the lazy training regime. In this work, we investigate scaled ResNet in the limit of infinitely deep and wide neural networks, of wh ...

2024