Statistical structure of neural spiking under non-Poissonian stimulation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes via gradient ascent the likelihood of postsynaptic firing at one or sever ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...
We describe evolution of spiking neural architectures to control navigation of autonomous mobile robots. Experimental results with simple fitness functions indicate that evolution can rapidly generate spiking circuits capable of navigating in textured envi ...
Maximization of information transmission by a spiking-neuron model predicts changes of synaptic connections that depend on timing of pre- and postsynaptic spikes and on the postsynaptic membrane potential. Under the assumption of Poisson firing statistics, ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes via gradient ascent the likelihood of postsynaptic firing at one or sever ...
A fascinating property of the brain is its ability to continuously evolve and adapt to a constantly changing environment. This ability to change over time, called plasticity, is mainly implemented at the level of the connections between neurons (i.e. the s ...
Small assemblies of Fitzhugh-Nagumo neural oscillators are used to study a type of threshold coupling coming from biology where it is used to model synapses. Phase locking and coincidence detection is modelled in the two most simple coupling configurations ...
We study analytically a model of long-term synaptic plasticity where synaptic changes are triggered by presynaptic spikes, postsynaptic spikes, and the time differences between pre- and postsynaptic spikes. We show that plasticity can lead to an intrinsic ...