Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In spite of decades of research, no feasible method for obtaining sufficient numbers of uncommitted muscle stem cells (MuSCs) for therapy of degenerative muscle diseases exists. One of the most fundamental problems associated with stem cell therapy of musc ...
Bone marrow transplantation is a well-established medical procedure for the treatment of various hematologic diseases. However, the relatively low number of hematopoietic stem cells (HSCs) that can be harvested, especially from umbilical cord blood, limits ...
Hematopoietic stem cells (HSC) are responsible for the life-long maintenance of our blood system. Their long-term capacity to both self-renew and differentiate and the ability to efficiently âhomeâ to their bone marrow niches when injected in the blood ...
Hematopoietic stem cells (HSCs) are responsible for the continuous production of all blood cells. This unique ability has made it possible to successfully use HSCs in the clinical setting to remedy various blood disorders. However, despite six decades of r ...
The application of stem cells in drug screening and regenerative therapy has led to important advances in basic biology and biomedicine. Such strategies require high cell numbers and the efficient maturation into faithful functional organ or tissue units. ...
Although stem cells hold tremendous potential for clinical applications, their in vitro manipulation remains very challenging. In vivo, stem cells reside in intricate 3D microenvironments, termed niche, in which many local and systemic extrinsic factors ar ...
The in vitro expansion of hematopoietic stem cells (HSC) for clinical applications is hampered by a rapid loss of HSC blood reconstitution capability in culture. While these rare cells can be stimulated to massively proliferate, cell divisions mostly resul ...
Harnessing the potential of human stem cells for modeling the physiology and diseases of cortical circuitry requires monitoring cellular dynamics in vivo. We show that human induced pluripotent stem cell (iPSC)-derived cortical neurons transplanted into th ...
The pioneer activity of transcription factors allows for opening of inaccessible regulatory elements and has been extensively studied in the context of cellular differentiation and reprogramming. In contrast, the function of pioneer activity in self-renewi ...
In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progeni ...