Loop optimizationIn compiler theory, loop optimization is the process of increasing execution speed and reducing the overheads associated with loops. It plays an important role in improving cache performance and making effective use of parallel processing capabilities. Most execution time of a scientific program is spent on loops; as such, many compiler optimization techniques have been developed to make them faster. Since instructions inside loops can be executed repeatedly, it is frequently not possible to give a bound on the number of instruction executions that will be impacted by a loop optimization.
Scheme (mathematics)In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Scheme (programming language)Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT Computer Science and Artificial Intelligence Laboratory (MIT AI Lab) and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms.
Hilbert schemeIn algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
Convex optimizationConvex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Dynamic programmingDynamic programming is both a mathematical optimization method and an algorithmic paradigm. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively.
Group schemeIn mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance.
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Formal schemeIn mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.
Fully polynomial-time approximation schemeA fully polynomial-time approximation scheme (FPTAS) is an algorithm for finding approximate solutions to function problems, especially optimization problems. An FPTAS takes as input an instance of the problem and a parameter ε > 0. It returns as output a value is at least times the correct value, and at most times the correct value. In the context of optimization problems, the correct value is understood to be the value of the optimal solution, and it is often implied that an FPTAS should produce a valid solution (and not just the value of the solution).