High-level synthesisHigh-level synthesis (HLS), sometimes referred to as C synthesis, electronic system-level (ESL) synthesis, algorithmic synthesis, or behavioral synthesis, is an automated design process that takes an abstract behavioral specification of a digital system and finds a register-transfer level structure that realizes the given behavior. Synthesis begins with a high-level specification of the problem, where behavior is generally decoupled from low-level circuit mechanics such as clock-level timing.
Register-transfer levelIn digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals. Register-transfer-level abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived.
Lexical semanticsLexical semantics (also known as lexicosemantics), as a subfield of linguistic semantics, is the study of word meanings. It includes the study of how words structure their meaning, how they act in grammar and compositionality, and the relationships between the distinct senses and uses of a word. The units of analysis in lexical semantics are lexical units which include not only words but also sub-words or sub-units such as affixes and even compound words and phrases. Lexical units include the catalogue of words in a language, the lexicon.
LLVMLLVM is a set of compiler and toolchain technologies that can be used to develop a frontend for any programming language and a backend for any instruction set architecture. LLVM is designed around a language-independent intermediate representation (IR) that serves as a portable, high-level assembly language that can be optimized with a variety of transformations over multiple passes. The name LLVM originally stood for Low Level Virtual Machine, though the project has expanded and the name is no longer officially an initialism.
Lean (proof assistant)Lean is a theorem prover and programming language. It is based on the calculus of constructions with inductive types. The Lean project is an open-source project hosted on GitHub. It was launched by Leonardo de Moura at Microsoft Research in 2013. Lean has an interface, implemented as a Visual Studio Code extension and Language Server Protocol server, that differentiates it from other interactive theorem provers. It has native support for Unicode symbols, which can be typed using LaTeX-like sequences, such as "\times" for "×".
Closed-world assumptionThe closed-world assumption (CWA), in a formal system of logic used for knowledge representation, is the presumption that a statement that is true is also known to be true. Therefore, conversely, what is not currently known to be true, is false. The same name also refers to a logical formalization of this assumption by Raymond Reiter. The opposite of the closed-world assumption is the open-world assumption (OWA), stating that lack of knowledge does not imply falsity. Decisions on CWA vs.