In digital circuit design, register-transfer level (RTL) is a design abstraction which models a synchronous digital circuit in terms of the flow of digital signals (data) between hardware registers, and the logical operations performed on those signals.
Register-transfer-level abstraction is used in hardware description languages (HDLs) like Verilog and VHDL to create high-level representations of a circuit, from which lower-level representations and ultimately actual wiring can be derived. Design at the RTL level is typical practice in modern digital design.
Unlike in software compiler design, where the register-transfer level is an intermediate representation and at the lowest level, the RTL level is the usual input that circuit designers operate on. In fact, in circuit synthesis, an intermediate language between the input register transfer level representation and the target netlist is sometimes used. Unlike in netlist, constructs such as cells, functions, and multi-bit registers are available. Examples include FIRRTL and RTLIL.
Transaction-level modeling is a higher level of electronic system design.
A synchronous circuit consists of two kinds of elements: registers (Sequential logic) and combinational logic. Registers (usually implemented as D flip-flops) synchronize the circuit's operation to the edges of the clock signal, and are the only elements in the circuit that have memory properties. Combinational logic performs all the logical functions in the circuit and it typically consists of logic gates.
For example, a very simple synchronous circuit is shown in the figure. The inverter is connected from the output, Q, of a register to the register's input, D, to create a circuit that changes its state on each rising edge of the clock, clk. In this circuit, the combinational logic consists of the inverter.
When designing digital integrated circuits with a hardware description language (HDL), the designs are usually engineered at a higher level of abstraction than transistor level (logic families) or logic gate level.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc
Students will acquire basic knowledge about methodologies and tools for the design, optimization, and verification of custom digital systems/hardware.
They learn how to design synchronous digital cir
The goal of this lab is to get a working knowledge on the use of industrial state-of-the-art EDA (Electronic Design Automation) tools and design kits for the design of analog and digital integrated ci
The course introduces the fundamentals of digital integrated circuits and the technology aspects from a designers perspective. It focuses mostly on transistor level, but discusses also the extension t
In computer engineering, logic synthesis is a process by which an abstract specification of desired circuit behavior, typically at register transfer level (RTL), is turned into a design implementation in terms of logic gates, typically by a computer program called a synthesis tool. Common examples of this process include synthesis of designs specified in hardware description languages, including VHDL and Verilog. Some synthesis tools generate bitstreams for programmable logic devices such as PALs or FPGAs, while others target the creation of ASICs.
Logic simulation is the use of simulation software to predict the behavior of digital circuits and hardware description languages. Simulation can be performed at varying degrees of physical abstraction, such as at the transistor level, gate level, register-transfer level (RTL), electronic system-level (ESL), or behavioral level. Logic simulation may be used as part of the verification process in designing hardware. Simulations have the advantage of providing a familiar look and feel to the user in that it is constructed from the same language and symbols used in design.
Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design; this article in particular describes EDA specifically with respect to integrated circuits (ICs).
Explores formally verifying Chisel designs using SMT solvers and covers examples like delayed assertions and proofs by induction.
Explores the construction and key concepts of Digital Systems, including binary representation, hardware-software differences, and implementation options.
Covers the design of a VGA Adapter for a Pong game project and explains the VGA interface architecture and video signal generation options.
Logic rewriting is a powerful optimization technique that replaces small sections of a Boolean network with better implementations. Typically, exact synthesis is used to compute optimum replacement on-the-fly, with possible support for Boolean don't cares. ...
Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...
Electronic devices play an irreplaceable role in our lives. With the tightening time to market, exploding demand for computing power, and continuous desire for smaller, faster, less energy-consuming, and lower-cost chips, computer-aided design for electron ...