Publication

Improving Fatigue Evaluations of Structures Using In-Service Behavior Measurement Data

Abstract

Conservative models and code practices are usually employed for fatigue-damage predictions of existing structures. Direct in-service behavior measurements are able to provide more accurate estimations of remaining-fatigue-life predictions. However, these estimations are often accurate only for measured locations and measured load conditions. Behavior models are necessary for exploiting information given by measurements and predicting the fatigue damage at all critical locations and for other load cases. Model-prediction accuracy can be improved using system identification techniques where the properties of structures are inferred using behavior measurements. Building upon recent developments in system identification where both model and measurement uncertainties are considered, this paper presents a new data-interpretation framework for reducing uncertainties related to prediction of fatigue life. An initial experimental investigation confirms that, compared with traditional engineering approaches, the methodology provides a safe and more realistic estimation of the fatigue reserve capacity. A second application on a full-scale bridge also confirms that using load-test data reduces the uncertainty related to remaining-fatigue-life predictions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.