Publication

Interaction between meta-materials and shallow donors in bulk GaN at THz frequency

Abstract

We report the coupling and interaction between shallow donors and microcavities in bulk GaN at THz frequencies. At 4K, the shallow donors lead to an absorption at 23.5 meV (5.7 THz) under optical pumping above the bandgap of GaN. The microcavities are based on metamaterials and are designed to resonate around 5.7 THz. At 4 K, the matter-cavity interaction is clearly demonstrated on differential transmission of the sample. The cavity resonance shifts when the absorption occurs. Our model and simulations are in good agreement with the experimental data. (C) 2014 Optical Society of America

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Metamaterial
A metamaterial (from the Greek word μετά meta, meaning "beyond" or "after", and the Latin word materia, meaning "matter" or "material") is any material engineered to have a property that is rarely observed in naturally occurring materials. They are made from assemblies of multiple elements fashioned from composite materials such as metals and plastics. These materials are usually arranged in repeating patterns, at scales that are smaller than the wavelengths of the phenomena they influence.
Terahertz metamaterial
A terahertz metamaterial is a class of composite metamaterials designed to interact at terahertz (THz) frequencies. The terahertz frequency range used in materials research is usually defined as 0.1 to 10 THz. This bandwidth is also known as the terahertz gap because it is noticeably underutilized. This is because terahertz waves are electromagnetic waves with frequencies higher than microwaves but lower than infrared radiation and visible light.
Terahertz time-domain spectroscopy
In physics, terahertz time-domain spectroscopy (THz-TDS) is a spectroscopic technique in which the properties of matter are probed with short pulses of terahertz radiation. The generation and detection scheme is sensitive to the sample's effect on both the amplitude and the phase of the terahertz radiation. Typically, an ultrashort pulsed laser is used in the terahertz pulse generation process. In the use of low-temperature grown GaAs as an antenna, the ultrashort pulse creates charge carriers that are accelerated to create the terahertz pulse.
Show more
Related publications (39)

In-Sensor Passive Speech Classification with Phononic Metamaterials

Daniel Moreno Garcia

Mitigating the energy requirements of artificial intelligence requires novel physical substrates for computation. Phononic metamaterials have vanishingly low power dissipation and hence are a prime candidate for green, always-on computers. However, their u ...
Weinheim2024

Computational Design of Flexible Planar Microstructures

Mark Pauly, Francis Julian Panetta, Tian Chen, Christopher Brandt, Jean Jouve

Mechanical metamaterials enable customizing the elastic properties of physical objects by altering their fine-scale structure. A broad gamut of effective material properties can be produced even from a single fabrication material by optimizing the geometry ...
2023

Extreme Spatial Dispersion in Nonlocally Resonant Elastic Metamaterials

Romain Christophe Rémy Fleury, Aleksi Antoine Bossart

To date, the vast majority of architected materials have leveraged two physical principles to control wave behavior, namely, Bragg interference and local resonances. Here, we describe a third path: structures that accommodate a finite number of delocalized ...
2023
Show more
Related MOOCs (18)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.