Pattern matchingIn computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations (if any) of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence (i.
Mutual recursionIn mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are naturally mutually recursive. The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees).
Persistent data structureIn computing, a persistent data structure or not ephemeral data structure is a data structure that always preserves the previous version of itself when it is modified. Such data structures are effectively immutable, as their operations do not (visibly) update the structure in-place, but instead always yield a new updated structure. The term was introduced in Driscoll, Sarnak, Sleator, and Tarjans' 1986 article. A data structure is partially persistent if all versions can be accessed but only the newest version can be modified.
Generic programmingGeneric programming is a style of computer programming in which algorithms are written in terms of data types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplicate code. Generics was introduced to the main-stream programming with Ada in 1977 and then with templates in C++ it became part of the repertoire of professional library design.
CorecursionIn computer science, corecursion is a type of operation that is to recursion. Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case. Put simply, corecursive algorithms use the data that they themselves produce, bit by bit, as they become available, and needed, to produce further bits of data.
RecursionRecursion occurs when the definition of a concept or process depends on a simpler version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur.
Data structureIn computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type.
General recursive functionIn mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis).
Purely functional data structureIn computer science, a purely functional data structure is a data structure that can be directly implemented in a purely functional language. The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety. Efficient purely functional data structures may require the use of lazy evaluation and memoization.
NP-completenessIn computational complexity theory, a problem is NP-complete when: It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) solution. The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions.